Задание ЕГЭ
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке K стороны BC. Докажите, что K – середина BC.Решение
Решение:
ABCD параллелограмм, поэтому BC||AD. ∠BKA = ∠KAD, как накрест лежащие, при BC||AD и секущей AK. ∠BAK = ∠KAD = ∠BKA, отсюда треугольник AKB равнобедренный, AB = BK.
Аналогично, треугольник KDC равнобедренный, KC = DC.
Стороны АВ = DC, как противоположные стороны параллелограмма. Значит, АВ = ВК = КС = DC, точка К середина стороны ВС.
Что и требовалось доказать.