Найдите наименьшее значение функции y=√(x^2+4x+40).
Задание ЕГЭ Найдите наименьшее значение функции y=\sqrt{x^{2}+4x+40}. Решение Решение:    Наименьшее
11
Твоя школа
Груз массой 0,16 кг колеблется на пружине. Его скорость v меняется по закону v=v0cos2t/T, где t – время с момента начала колебаний …
Задание ЕГЭ Груз массой 0,16 кг колеблется на пружине. Его скорость v меняется по закону v=v_{0}\cos
8
Твоя школа
Первый и второй насосы наполняют бассейн за 15 минут, второй и третий – за 21 минуту, а первый и третий – за 35 минут.
Задание ЕГЭ Первый и второй насосы наполняют бассейн за 15 минут, второй и третий – за 21 минуту, а первый
5
Твоя школа
На оси абсцисс отмечено десять точек: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10.
Задание ЕГЭ На рисунке изображён график функции y = f(x). На оси абсцисс отмечено десять точек: x1, x2
9
Твоя школа
Найдите объём многогранника, вершинами которого являются точки A, B, C, B1 …
Задание ЕГЭ Найдите объём многогранника, вершинами которого являются точки A, B, C, B1 прямоугольного
11
Твоя школа
В соревнованиях по толканию ядра участвуют спортсмены из четырёх стран: 10 из Аргентины, 3 из Бразилии …
Задание ЕГЭ В соревнованиях по толканию ядра участвуют спортсмены из четырёх стран: 10 из Аргентины
9
Твоя школа
При артиллерийской стрельбе автоматическая система делает выстрел по цели.
Задание ЕГЭ При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена
11
Твоя школа
Решите уравнение x=(-3x-24)(x-13).
Задание ЕГЭ Решите уравнение x=\frac{–3x–24}{x–13}. Если уравнение имеет больше одного корня, в ответе
9
Твоя школа
Найдите значение выражения (a^2-36)*(1/(a-6)-1/(a+6)) при a=√17 5/101.
Задание ЕГЭ Найдите значение выражения (a^{2}–36)\cdot (\frac{1}{a–6}–\frac{1}{a+6}) при a=\sqrt{17\frac{5}{101}}.
14
Твоя школа
В треугольнике ABC угол C равен 46°, AD – биссектриса, угол CAD равен 38°.
Задание ЕГЭ В треугольнике ABC угол C равен 46°, AD – биссектриса, угол CAD равен 38°. Найдите угол B.
10
Твоя школа
На координатной плоскости изображены векторы a→ и b→. Найдите длину вектора 2a→ – b→.
Задание ЕГЭ На координатной плоскости изображены векторы \overrightarrow{a} и \overrightarrow{b}.
11
Твоя школа
Даны точки A(5; 4) и B(6; 3). Найдите скалярное произведение AB и CB, если BC = 9, ∠CBA = 135°.
Задание ЕГЭ Даны точки A(5; 4) и B(6; 3). Найдите скалярное произведение \overrightarrow{AB} и \overrightarrow{CB}
9
Твоя школа
В треугольнике ABC известно, что стороны AB и BC равны 11, а угол BAC равен 30°.
Задание ЕГЭ В треугольнике ABC известно, что стороны AB и BC равны 11, а угол BAC равен 30°.
9
Твоя школа
В равнобедренном прямоугольном треугольнике ABC с прямым углом C известно, что AB = 8√2.
Задание ЕГЭ В равнобедренном прямоугольном треугольнике ABC с прямым углом C известно, что AB = 8√2.
7
Твоя школа
Сторона равностороннего треугольника АВС равна 6√3. Найдите скалярное произведение векторов АВ→ и СА→.
Задание ЕГЭ Сторона равностороннего треугольника АВС равна 6√3. Найдите скалярное произведение векторов
10
Твоя школа
Сторона равностороннего треугольника ABC равна 6√3.
Задание ЕГЭ Сторона равностороннего треугольника ABC равна 6√3. Найдите длину суммы векторов \overrightarrow{AB}
13
Твоя школа
На координатной плоскости изображены векторы a→, b→ и с→ целочисленными координатами.
Задание ЕГЭ На координатной плоскости изображены векторы \overrightarrow{a}, \overrightarrow{b} и \overrightarrow{c}
8
Твоя школа
Даны векторы f→(︂-1/7; -2/3)︂ и e→(0,7; 2). Найдите координаты вектора g→ = -21f→ – 6e→.
Задание ЕГЭ Даны векторы \overrightarrow{f}(-\frac{1}{7};-\frac{2}{3}) и \overrightarrow{e}(0,7;
10
Твоя школа
В прямоугольном треугольнике ABC с прямым углом C известно, что AB = √149, AC = 10.
Задание ЕГЭ В прямоугольном треугольнике ABC с прямым углом C известно, что AB = √149, AC = 10.
10
Твоя школа
Даны векторы m→(-9; 2), n→(-4; 4), k→(11; -8) и p→(-5; -4). Найдите скалярное произведение (m→ – n→)*(k→ + p→).
Задание ЕГЭ Даны векторы \overrightarrow{m}(–9; 2), \overrightarrow{n}(–4; 4), \overrightarrow{k}(11;
10
Твоя школа
Найдите косинус угла между векторами p→ и q→, если известно, что p→(-5;-12) и q→(56; 33).
Задание ЕГЭ Найдите косинус угла между векторами \overrightarrow{p} и \overrightarrow{q}, если известно
6
Твоя школа
Даны векторы m→(-2; 4), n→(-7; 5) и k→(x; -3). Найдите x, если k→*(n→ – m→)=0.
Задание ЕГЭ Даны векторы \overrightarrow{m}(–2; 4), \overrightarrow{n}(–7; 5) и \overrightarrow{k}(x;
7
Твоя школа
Даны векторы m→(-2; 7), n→(9; -3) и k→(4; y). Найдите y, если k→*(m→ + n→)=0.
Задание ЕГЭ Даны векторы \overrightarrow{m}(–2; 7), \overrightarrow{n}(9; –3) и \overrightarrow{k}(4;
5
Твоя школа
Даны векторы m→(-7; 3), n→(-3; 5) и k→(-2; y). Найдите y, если (m→ – n→)*k→=0.
Задание ЕГЭ Даны векторы \overrightarrow{m}(–7; 3), \overrightarrow{n}(–3; 5) и \overrightarrow{k}(–2;
10
Твоя школа
Даны векторы m→(-4; -3), n→(-2; 2) и k→(x; 3). Найдите x, если (m→ + n→)*k→=0.
Задание ЕГЭ Даны векторы \overrightarrow{m}(–4; –3), \overrightarrow{n}(–2; 2) и \overrightarrow{k}(x;
12
Твоя школа
Длины векторов a→ и b→ равны соответственно 16 и 6, а их скалярное произведение равно 24.
Задание ЕГЭ Длины векторов \overrightarrow{a} и \overrightarrow{b} равны соответственно 16 и 6, а их
9
Твоя школа
Даны векторы m→(6; -2), n→(-1; 4) и k→(x; -2). Найдите x, если (m→ + n→)*k→=0.
Задание ЕГЭ Даны векторы \overrightarrow{m}(6; –2), \overrightarrow{n}(–1; 4) и \overrightarrow{k}(x;
12
Твоя школа
Длины векторов a→ и b→ равны соответственно 4 и 30, а их скалярное произведение равно 120.
Задание ЕГЭ Длины векторов \overrightarrow{a} и \overrightarrow{b} равны соответственно 4 и 30, а их
7
Твоя школа
Длины векторов a→ и b→ равны соответственно 9 и 60, а их скалярное произведение равно 429.
Задание ЕГЭ Длины векторов \overrightarrow{a} и \overrightarrow{b} равны соответственно 9 и 60, а их
19
Твоя школа
Длины векторов a→ и b→ равны соответственно 11 и 7, а их скалярное произведение равно 53.
Задание ЕГЭ Длины векторов \overrightarrow{a} и \overrightarrow{b} равны соответственно 11 и 7, а их
12
Твоя школа