Найдите наибольшее значение функции у = 3х^5 – 5х^3 + 16 …

Задание ЕГЭ

Найдите наибольшее значение функции у = 3х5 – 5х3 + 16 на отрезке [–4; 0].

Решение

Решение:

    Найдем производную функции:

y′ = (3х5 – 5х3 + 16)′ = 15x4 – 15x2

    Найдем нули производной:

15x4 – 15x= 0 
15x2(x2 – 1) = 0 
15x2 = 0 или x2 – 1 = 0
   x1 = 0           x2 = 1 x3 = –1

    Определим знаки производной функции и изобразим поведение функции:

Найдите наибольшее значение функции у = 3х^5 – 5х^3 + 16 на отрезке [–4; 0].

    Точка максимума: х = –1.  
    Найдём наибольшее значение функции:

у(–1) = 3·(–1)5 – 5·(–1)3 + 16 = –3 + 5 +16 = 18

Ответ: 18.

Твоя школа