Задание ЕГЭ
Найдите натуральное число, большее 1640, но меньшее 1930, которое делится на каждую свою цифру и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.Решение
Решение:
Первая цифра будет 1, т.к. число от 1640 до 1930.
Четвёртую (последнюю) цифру поставим 2, если число оканчивается на 2, то оно и делится на 2.
Третью цифру возьмём 6, а четвёртую 9, тогда сумма чисел полученного числа:
1 + 6 + 9 + 2 = 18
Сумма чисел 18 делится на 9, значит и всё чило делится на 9.
Сумма чисел 18 делится на 3, значит и всё число делится на 3, число оканчивается на 2, значит оно делится на 2, получаем число делится на 6, т.к. 6 = 3·2.
Полученное число 1692 больше 1640, но меньше 1930.
Ответ: 1692. (может быть и другой верный ответ)