Задание ЕГЭ
Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 112 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?Решение
Решение:
Пусть второй рабочий делает за час х деталей, тогда первый рабочий х + 9 деталей.
Второй рабочий выполнит заказ за \frac{112}{x} часов, а первый \frac{112}{x+9} часов. Зная, что первый рабочий выполняет заказ на 4 часа быстрее, чем второй, составим уравнение:
\frac{112}{x}-\frac{112}{x+9}=4\:{\color{Blue} |: 4}\\\frac{28}{x}-\frac{28}{x+9}=1\\\frac{28(x+9)-28x}{x(x+9)}=1\\\frac{252}{x^{2}+9x}=1
x2 + 9x = 252
x2 + 9x – 252 = 0
D = 92 – 4·1·(–252) = 1089 = 332
x_{1}=\frac{-9+33}{2 \cdot 1}=\frac{24}{2}=12\\x_{2}=\frac{-9-33}{2 \cdot 1}=\frac{-42}{2}=-21
Отрицательным количество деталей быть не может, значит второй рабочий делает 12 деталей в час.
Ответ: 12.