Задание ЕГЭ
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 14, AC = 21, NC = 10.Решение
Решение:
Рассмотрим ΔВМN и ΔАВС, в них ∠В общий, ∠МNB = ∠АСВ, как соответственные при двух параллельных прямых MN||AC и секущей ВС.
ΔВМN и ΔАВС подобны по двум равным углам. Значит пропорциональны соответствующие стороны:
\frac{MN}{AC}=\frac{BN}{BC}\\\frac{14}{21}=\frac{BN}{BN+NC}\\\frac{2}{3}=\frac{BN}{BN+10}
3·BN = 2·(BN + 10)
3BN = 2BN + 20
3BN – 2BN = 20
BN = 20
Ответ: 20.