Цилиндр вписан в правильную шестиугольную призму. Радиус основания цилиндра равен √3, а высота равна 2.

Задание ЕГЭ

Цилиндр вписан в правильную шестиугольную призму. Радиус основания цилиндра равен √3, а высота равна 2. Найдите площадь боковой поверхности призмы.

Решение

Решение:

     Правильная шестиугольная призма – это шестиугольная призма у которой 2 основания правильные шестиугольники, а боковые грани 6 равны прямоугольников.
    Площадь боковой поверхности данной призмы – это площадь 6-х равных прямоугольников.
    Высота прямоугольника равна высоте цилиндра h = 2. Длина прямоугольника а, является стороной правильного шестиугольника и находится через радиус вписанной окружности по формуле:

a=\frac{2\cdot r}{\sqrt{3}}=\frac{2\cdot \sqrt{3}}{\sqrt{3}}=2

    Найдём площадь боковой поверхности призмы:

Sбок. поверх. = 6·Sпрямоугольника = 6·h·a = 6·2·2 = 24

Ответ: 24.

Твоя школа